梅永丰的个人简介
梅永丰博士,出生于1976年3月, 2005年8月于香港城市大学物理与材料科学系获得理学博士学位;2005年9月到2007年4月,在德国斯图加特德国马克思-普朗克固态研究所从事博士后研究工作;2007年4月至今,在德国莱布尼兹固态与材料研究所担任固定研究职员和研究小组组长。梅永丰博士长期从事纳米科学与技术研究,早期主要从事纳米科学的材料学研究,将纳米技术充分运用到微纳器件的应用中,主要从事自由基纳米薄膜的自组装过程、性能探索和器件雏形研究。研究领域涉及微纳米机械学、纳米光学、纳米电子学、微纳机器人技术、微纳流体学、微能源存储、表面等离子体及超材料研究。
个人简介
姓名:梅永丰性别:男 出生年份: 1976年 家乡:江苏省常州市武进区郑陆镇徐家村委羌渚头
职称:教授
1995-1999,南京大学物理学系,本科,微电子与固态电子学
1999-2002,南京大学物理学系,硕士,光学
2002-2005,香港城市大学物理与材料科学系,理学博士
2005-2007,德国马克思普朗克固态研究所,博士后
2007-2010,德国莱布尼茨固态与材料研究所,课题组组长,固定研究职员
2010-至今,复旦大学材料科学系,教授
个人荣誉
2004年,梅永丰博士被香港城市大学科学与工程学院推荐为“香港青年科学奖候选人”(仅一名);同年,于法国欧洲材料学会春季会议上获青年科学家奖;2005年于香港城市大学获“中华旅行社奖学金”;2006年9月,在西班牙巴塞罗那微米和纳米工程会议上获得“科学艺术画荣誉奖”;2008年11月,于德国莱布尼兹固态与材料研究所获“IIN年度研究奖”(相当于年度最佳研究奖)。
研究方向
纳米薄膜技术 (Nanomembranes technology)
卷曲纳米技术(Rolled-up nanotech)
无机柔性电子学研究
微纳器件及其集成化研究
面向物联网的新型探测器研究。
代表性论文
1. P. Feng, I. M?nch, G. S. Huang, S. Harazim, E. J. Smith, Y. F. Mei*,O. G. Schmidt, Local-Illuminated Ultrathin Silicon Nanomembranes with Photovoltaic Effect and Negative Transconductance, Advanced Materials (2010). (in press)
2. A. A. Solovev, Y. F. Mei*, O. G. Schmidt, Catalytic Micro Strider at the Air-Liquid Interface, Advanced Materials (2010). (in press)
3. A. A. Solovev, S. Sanchez*, M. Pumera, Y. F. Mei*, O. G. Schmidt, Magnetic Control of Catalytic Microbots for the Delivery and Assembly of Microobjects, Advanced Functional Materials (2010). (in press)
4. Y. F. Mei,* S. Kiravittaya, S. Harazim, O. G. Schmidt, Principles and Applications of Micro- and Nanoscale Wrinkles, Materials Science & Engineering R: Reports (2010). (Invited Review; in press)
5. E. J. Smith,* Z. Liu, Y. F. Mei,* O. G. Schmidt, Combined surface plasmon and classical waveguiding through metamaterial fiber design, Nano Letters 10, 1 (2010). (Cover; highlighted in Nature Photonics)
6. P. Feng,* I. M?nch, S. Harazim, G. Huang, Y. F. Mei,* O. G. Schmidt, Giant Persistent Photoconductivity in Rough Silicon Nanomembranes, Nano Letters 9, 3453 (2009).
7. A. A. Solovev, Y. F. Mei,* et al. Catalytic Microtubular Jet Engines Self-propelled by Accumulated Gas Bubbles, Small 5, 1688-1692 (2009).? (Cover)
8. E. Smith,* Z. Liu, Y. F. Mei,* O. G. Schmidt, System investigation of a rolled-up metamaterial optical hyperlens structure, Applied Physics Letters 95, 083104 (2009); “Erratum” in 96, 019902 (2010).
9. V. A. Bola?os Qui?ones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei,* O. G. Schmidt, Optical Resonance Tuning and Polarization of Thin-Walled Tubular Microcavities, Optics Letters 34, 2345u20132347 (2009).
10. Y. F. Mei,* et al. Fabrication, self-assembly, and properties of ultra-thin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets, ACS Nano 3, 1663 (2009). (Cover)
11. G. S. Huang,* Y. F. Mei, et al. Optical properties of rolled-up tubular microcavities from shaped nanomembranes, Applied Physics Letters 94: 141901 (2009). (Cover)
12. G. S. Huang,* Y. F. Mei,* et al. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells, Lab on a Chip,? 9: 263 (2009).
13. Y. F. Mei,* et al.Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers, Advanced Materials, 20: 4085 (2008). (Cover)
14. Y.-F. Chen,* Y. F. Mei,* et al. Towards Flexible Magnetoelectronics: Buffer-Enhanced and Mechanically Tunable GMR of Co/Cu Multilayers on Plastic Substrates, Advanced Materials, 20: 3224-3228 (2008).
15. A. Malachias, Y. F. Mei,* et al. Wrinkled-up Nanochannel Networks: Long-Range Ordering, Scalability, and X-ray Investigation, ACS Nano, 2: 1715-1721 (2008). (Cover)
16. Y. F. Mei,* et al. Semiconductor sub-micro-/ nanochannel networks by deterministic layer wrinkling, Advanced Materials, 19(16): 2124-2128 (2007).
17. Y. F. Mei,* et al. Optical properties of a wrinkled nanomembrane with embedded quantum well, Nano Letters, 7(6): 1676-1679 (2007).
18. Y. F. Mei,* G et al.Visible cathodoluminescence of 4 angstrom single-walled carbon nanotubes, Applied Physics Letters, 87, 213114 (2005).
19. Y. F. Mei,* et al. Synthesis and optical properties of germanium nanorod array fabricated on porous anodic alumina and Si-based templates, Applied Physics Letters, 86, 21111 (2005).
20. Y. F. Mei, X. L. Wu,* et al. Formation mechanism of alumina nanotube array, Physical Letters A, 309, 109-113 (2003).
21. X. L. Wu,* Y. F. Mei, et al. Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures,? Physical Review Letters, vol. 86, 3000-3003 (2001).